This review article provides a comprehensive analysis of triazatruxene (TAT) and its derivatives, highlighting their proper- ties, synthesis history, and photophysical characteristics. Recent- ly, triazatruxene-based molecules have shown excellent efficiency for thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs) and hole transporting materials (HTMs) for perovskite solar cells. Triazatruxene (TAT) and its derivatives, first synthesized in 1965, have garnered significant interest due to their remarkable properties like solubility, thermal stability, and electronic features, making them suitable for advanced technolo- gies. TAT-based discotic liquid crystals (DLCs) enhance charge transport in organic electronics like OLEDs and organic photovol- taic (OPVs) through their ordered columnar structures. TAT deriv- atives also show promise as hole transport materials in perovskite solar cells and as thermally activated delayed fluorescence materi- als for efficient OLEDs. Additionally, they exhibit potential as G- quadruplex ligands with anticancer properties, encouraging fur- ther exploration.
NAMES:
ONLINE ISSN:2456-8244
Keywords: Triazatruxene Organic light emitting diodes Perovskite solar cells Thermally activated delayed fluorescence Internal quantum efficiency
DOI:
1. Vogel, I. (1974). Practical organic chemistry.
2. Li, X. C., Wang, C. Y., Lai, W. Y., & Huang,
W. (2016). Triazatruxene-based materials for
organic electronics and optoelectronics. Journal
of Materials Chemistry C, 4(45), 10574-10587.
3. Goubard, F., & Dumur, F. (2015). Truxene: a
promising scaffold for future materials. RSC
advances, 5(5), 3521-3551.
4.Tao, L., Xie, Y., Zhao, K. X., Hu, P., Wang, B.
Q., Zhao, K., & Bai, X. Y. (2024). Triphenylene
Trimeric Discotic Liquid Crystals: Synthesis, Columnar Mesophase and Photophysical Prop-
erties. New Journal of Chemistry.
5. Bisoyi, H. K., & Li, Q. (2014). Directing self-
organized columnar nanostructures of discotic
liquid crystals for device applications. In Nano-
science with Liquid Crystals: From Self-
Organized Nanostructures to Applications (pp.
209-256). Cham: Springer International Pub-
lishing.
6. Pal, K., Raza, M. K., Legac, J., Rahman, M.
A., Manzoor, S., Rosenthal, P. J., & Hoda, N.
(2021). Design, synthesis, crystal structure and
anti-plasmodial evaluation of tetrahydrobenzo
[4, 5] thieno [2, 3-d] pyrimidine derivatives.
RSC Medicinal Chemistry, 12(6), 970-981.
7. L. dos Santos, P., de Sa Pereira, D., Eng, J.,
Ward, J. S., Bryce, M. R., Penfold, T. J., &
Monkman, A. P. (2023). Fine‐Tuning the Photo-
physics of Donor‐Acceptor (D‐A3) Thermally
Activated Delayed Fluorescence Emitters Using
Isomerisation. ChemPhotoChem, 7(2),
e202200248.
8. Wu, T., Zhang, D., Ou, Y., Ma, H., Sun, A.,
Zhao, R., ... & Hua, Y. (2021). Efficient perov-
skite solar cells enabled by large dimensional
structured hole transporting materials. Journal
of Materials Chemistry A, 9(3), 1663-1668.
9. Ginnari-Satriani, L., Casagrande, V., Bianco,
A., Ortaggi, G., & Franceschin, M. (2009). A hy-
drophilic three side-chained triazatruxene as a
new strong and selective G-quadruplex ligand.
Organic & Biomolecular Chemistry, 7(12), 2513
-2516.
10. Pathak, S. K., Liu, H., Zhou, C., Xie, G., &
Yang, C. (2021). Triazatruxene based star-
shaped thermally activated delayed fluores-
cence emitters: modulating the performance of
solution-processed non-doped OLEDs via side-
group engineering. Journal of Materials Chem-
istry C, 9(23), 7363-7373.
11. Aslan, M., Taskesenligil, Y., Pıravadılı, S., &
Saracoglu, N. (2021). Functionalization at non-
peripheral positions of triazatruxene: modular
construction of 1, 6, 11-triarylated-
triazatruxenes for potentially organic electron-
ics and optoelectronics. The Journal of Organic
Chemistry, 87(8), 5037-5050.
12. Liu, Y., Wu, Y., Wang, T., Wang, Q., Han,
X., Wu, X., & Wang, L. (2023). Bridged
triazatruxene-based host materials for solution-
processed thermally activated delayed fluores-
cence organic light emitting diodes with high
power efficiency. Organic Electronics, 113,
106720.
13. Ahn, D. H., Kim, S. W., Lee, H., Ko, I. J.,
Karthik, D., Lee, J. Y., & Kwon, J. H. (2019).
Highly efficient blue thermally activated delayed
fluorescence emitters based on symmetrical
and rigid oxygen-bridged boron acceptors. Na-
ture Photonics, 13(8), 540-546.
14. Peng, X., Qiu, W., Li, W., Li, M., Xie, W., Li,
W., & Su, S. J. (2022). Synergetic Horizontal
Dipole Orientation Induction for Highly Effi-
cient and Spectral Stable Thermally Activated
Delayed Fluorescence White Organic Light‐
Emitting Diodes. Advanced Functional Materi-
als, 32(28), 2203022.